Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study investigates the new particle formation (NPF) events at an urban location in the Eastern Mediterranean. Particle size distribution, particulate chemical composition, and gaseous pollutants were monitored in Rehovot, Israel (31°53″N 34°48″E) during two campaigns: from April 29 to 3 May 2021 (Campaign 1) and from May 3 to 11 May 2023 (Campaign 2), coinciding with an intensive bonfire burning festival. The organic aerosols (OA) source apportionment identified two major factors—Hydrocarbon‐like OA and Biomass‐burning OA—as well as two secondary factors—MO‐OOA (more oxidized‐oxygenated OA) and LO‐OOA (low oxidized oxygenated OA). NPF events were frequently observed during the day (mostly well‐defined nucleation events) and at night (burst of ultrafine mode particles without any discernible growth). A condensation sink value of (9.4 ± 4.0) × 10−3 s−1during Campaign 1 and (14.2 ± 6.0) × 10−3 s−1during Campaign 2 was obtained. The daytime events were associated with enhanced sulfuric acid proxy concentrations of (2–12) × 106molecules cm−3, suggesting the role of gas‐phase photochemistry in promoting NPF. A novel approach of hybrid positive matrix factorization analysis was used to deconvolve the chemical species responsible for the observed events. The results suggest the involvement of multiple components, including ammonium sulfate and MO‐OOA, in the nucleation; Nitrate, HOA and LO‐OOA participate in the subsequent particle growth for the daytime events. Nighttime events involve only semi‐volatile species (LO‐OOA, HOA and nitrate) along with ammonium sulfate.more » « lessFree, publicly-accessible full text available December 16, 2025
-
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenesAbstract. Chemical ionization mass spectrometry with the nitrate reagent ion (NO3- CIMS) was used to investigate the products of the nitrate radical(NO3) initiated oxidation of four monoterpenes in laboratory chamber experiments. α-Pinene, β-pinene, Δ-3-carene, andα-thujene were studied. The major gas-phase species produced in each system were distinctly different, showing the effect of monoterpenestructure on the oxidation mechanism and further elucidating the contributions of these species to particle formation and growth. By comparinggroupings of products based on the ratios of elements in the general formula CwHxNyOz, therelative importance of specific mechanistic pathways (fragmentation, termination, and radical rearrangement) can be assessed for eachsystem. Additionally, the measured time series of the highly oxidized reaction products provide insights into the ratio of relative production andloss rates of the high-molecular-weight products of the Δ-3-carene system. The measured effective O:C ratios of reaction products wereanticorrelated with new particle formation intensity and number concentration for each system; however, the monomer : dimer ratios of products had a smallpositive trend. Gas-phase yields of oxidation products measured by NO3- CIMS correlated with particle number concentrations for eachmonoterpene system, with the exception of α-thujene, which produced a considerable amount of low-volatility products but noparticles. Species-resolved wall loss was measured with NO3- CIMS and found to be highly variable among oxidized reaction products in ourstainless steel chamber.more » « less
-
Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosolAbstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.more » « less
An official website of the United States government
